Wednesday, 7 December 2011

Fiber Optic Network

Fiber Optic Network

In the telcos, singlemode fiber is used to connect long distance switches, central offices and SLCs (subscriber loop carriers, small switches in pedestals in subdivisions or office parks or in the basement of a larger building). Practically every telco's network is now fiber optics except the connection to the home. Fiber to the home is not yet cost effective - especially since most homes do not want (nor are willing to pay) for the high speed services that would justify fiber optics. 


CATV companies "overbuild" with fiber. They lash fiber cable onto the aerial "hardline" coax used for the rest of the network or pull it in the same conduit underground. The fiber allows them to break their network into smaller service areas that prevent large numbers of customers from being affected in an outage, making for better service and customer relations. The fiber also gives them a return path which they use for Internet and telephone connections, increasing their revenue potential. 


LANs (local area networks) use fiber optics primarily in the backbone but increasingly to the desk. The LAN backbone often needs longer distance than copper cable (Cat 5/5e/6) can provide and of course, the fiber offers higher bandwidth for future expansion. Most large corporate LANs use fiber backbones with copper wire to the desktop. Fiber to the desk can be cost effective if properly designed. 


Lots of other networks use fiber. CCTV is often on fiber for it's distance capability. Industrial plants use lots of fiber or distance and noise immunity. Utilities use it for network management, liking its immunity to noise also. The military uses it because it's hard to tap or jam. Airplanes use it for that reason too, but also like the lighter weight of fiber. 


Designing Cable Networks
I guess this is too big a topic for a overview! But we'll pass along some hints to make life easier. First and foremost, visit the work site and check it out thoroughly. Know the "standards" but use common sense in designing the installation. Don't cut corners which may affect performance or reliability. Consider what are the possible problems and work around or prevent them. There ain't no substitute for common sense here! 


Fiber's extra distance capability makes it possible to do things not possible with copper wire. For example, you can install all the electronics for a network in one communications closet for a building and run straight to the desktop with fiber. With copper, you can only go about 90 meters (less than 300 feet), so you need to keep the electronics close to the desk. With fiber, you only need passive patch panels locally to allow for moves. Upgrades are easy, since the fiber is only loafing at today's network speed! 








Is Copper Really Cheaper Than Fiber'

When it comes to costs, fiber optics is always assumed to be much more expensive than copper cabling. Whatever you look at - cable, terminations or networking electronics - fiber costs more, although as copper gets faster (e.g. Cat 6) it gets more expensive, almost as much as fiber. So isn't it obvious that fiber networks are more expensive than copper? Maybe not! There is more to consider in making the decision. 




Why Use Fiber?

If fiber is more expensive, why have all the telephone networks been converted to fiber? And why are all the CATV systems converting to fiber too? Are their networks that different? Is there something they know we don't? Telcos use fiber to connect all their central offices and long distance switches because it has thousands of times the bandwidth of copper wire and can carry signals hundreds of times further before needing a repeater. The CATV companies use fiber because it give them greater reliability and the opportunity to offer new services, like phone service and Internet connections. Both telcos and CATV operators use fiber for economic reasons, but their cost justification requires adopting new network architectures to take advantage of fiber's strengths. A properly designed premises cabling network can also be less expensive when done in fiber instead of copper. There are several good examples of fiber being less expensive, so lets examine them. 





Industrial Networks

In an industrial environment, electromagnetic interference (EMI) is often a big problem. Motors, relays, welders and other industrial equipment generate a tremendous amount of electrical noise that can cause major problems with copper cabling, especially unshielded cable like Cat 5. In order to run copper cable in an industrial environment, it is often necessary to pull it through conduit to provide adequate shielding. With fiber optics, you have complete immunity to EMI. You only need to choose a cable type that is rugged enough for the installation, with breakout cable being a good choice for it's heavy-duty construction. The fiber optic cable can be installed easily from point to point, passing right next to major sources of EMI with no effect. Conversion from copper networks is easy with media converters, gadgets that convert most types of systems to fiber optics. Even with the cost of the media converters, the fiber optic network will be less than copper run in conduit. 




Long Cable Runs

Most networks are designed around structured cabling installed per EIA/TIA 568 standards. This standard calls for 90 meters (295 feet) of permanently installed unshielded twisted pair (UTP) cable and 10 meters (33 feet) of patchcords. But suppose you need to connect two buildings or more? The distance often exceeds the 90 meters by the time you include the runs between the buildings plus what you need inside each building. By the time you buy special aerial or underground waterproof copper cable and repeaters, you will usually spend more than if you bought some outside plant fiber optic cable and a couple of inexpensive media converters. It's guaranteed cheaper if you go more than two links (180 meters.) 




Centralized Fiber LANs

When most contractors and end users look at fiber optics versus Cat 5e cabling for a LAN, they compare the same old copper LAN with fiber directly replacing the copper links. The fiber optic cable is a bit more expensive than Cat 5e and terminations are a little more too, but the big difference is the electronics which are $200 or more per link extra for fiber. However, the real difference comes if you use a centralized fiber optic network - shown on the right of the diagram above. Since fiber does not have the 90 meter distance limitation of UTP cable, you can place all electronics in one location in or near the computer room. The telecom closet is only used for passive connection of backbone fiber optic cables, so no power, UPS, ground or air conditioning is needed. These auxiliary services, necessary with Cat 5 hubs, cost a tremendous amount of money in each closet. In addition, having all the fiber optic hubs in one location means better utilization of the hardware, with fewer unused ports. Since ports in modular hubs must be added in modules of 8 or 16, it's not uncommon with a hub in a telecom closet to have many of the ports in a module empty . With a centralized fiber system, you can add modules more efficiently as you are supporting many more desktop locations but need never have more than a one module with open ports. 




High Speed Networking

It was over a year after Gigabit Ethernet (GbE) became available on fiber optics that it finally become available on Cat 5e. It took another couple of years before GbE on copper became significantly less expensive. In order to get GbE to work over Cat 5e, the electronics must be very complicated, and consequently as expensive as fiber. A newer version is in the wings, awaiting a Cat 6 standard, but that means the version running over Cat 5e will be obsolete before it even gets started! Finally, we went to a major distributor's seminar on advanced cabling recently and the copper marketing guy told us to go fiber for GbE. 


Bottom Line
So when it comes to costs, looking at the cabling component costs may not be a good way to analyze total network costs. Consider the total system and you may find fiber looks a lot more attractive. 


Fiber Optic Testing

After the cables are installed and terminated, it's time for testing. For every fiber optic cable plant, you will need to test for continuity, end-to-end loss and then troubleshoot the problems. If it's a long outside plant cable with intermediate splices, you will probably want to verify the individual splices with an OTDR also, since that's the only way to make sure that each one is good. If you are the network user, you will also be interested in testing power, as power is the measurement that tells you whether the system is operating properly. 


You'll need a few special tools and instruments to test fiber optics. See Jargon in the beginning of Lennie's Guide to see a description of each instrument. 




Getting Started

Even if you're an experienced installer, make sure you remember these things. 


 Have The Right Tools And Test Equipment For The Job. You Will Need:

1. Source and power meter, optical loss test set or test kit with proper equipment adapters for the cable plant you are testing.
2. Reference test cables that match the cables to be tested and mating adapters, including hybrids if needed.
3. Fiber Tracer or Visual Fault Locator.
4. Cleaning materials - lint free cleaning wipes and pure alcohol.
5. OTDR and launch cable for outside plant jobs. 




 Know How To Use Your Test Equipment

Before you start, get together all your tools and make sure they are all working properly and you and your installers know how to use them. It's hard to get the job done when you have to call the manufacturer from the job site on your cell phone to ask for help. Try all your equipment in the office before you take it into the field. Use it to test every one of your reference test jumper cables in both directions using the single-ended loss test to make sure they are all good. If your power meter has internal memory to record data be sure you know how to use this also. You can often customize these reports to your specific needs - figure all this out before you go it the field - it could save you time and on installations, time is money! 


Know The Network You're Testing
This is an important part of the documentation process we discussed earlier. Make sure you have cable layouts for every fiber you have to test. Prepare a spreadsheet of all the cables and fibers before you go in the field and print a copy for recording your test data. You may record all your test data either by hand or if your meter has a memory feature, it will keep test results in on-board memory that can be printed or transferred to a computer when you return to the office. 


A Note On Using A Fiber Optic Source Eye Safety
Fiber optic sources, including test equipment, are generally too low in power to cause any eye damage, but it's still a good idea to check connectors with a power meter before looking into it. Some telco DWDM and CATV systems have very high power and they could be harmful, so better safe than sorry. 


Fiber optic testing includes three basic tests that we will cover separately: Visual inspection for continuity or connector checking, Loss testing, and Network Testing. 


Visual Inspection

Visual Tracing

Continuity checking makes certain the fibers are not broken and to trace a path of a fiber from one end to another through many connections. Use a visible light "fiber optic tracer" or "pocket visual fault locator". It looks like a flashlight or a pen-like instrument with a lightbulb or LED soure that mates to a fiber optic connector. Attach a cable to test to the visual tracer and look at the other end to see the light transmitted through the core of the fiber. If there is no light at the end, go back to intermediate connections to find the bad section of the cable. 


A good example of how it can save time and money is testing fiber on a reel before you pull it to make sure it hasn't been damaged during shipment. Look for visible signs of damage (like cracked or broken reels, kinks in the cable, etc.) . For testing, visual tracers help also identify the next fiber to be tested for loss with the test kit. When connecting cables at patch panels, use the visual tracer to make sure each connection is the right two fibers! And to make certain the proper fibers are connected to the transmitter and receiver, use the visual tracer in place of the transmitter and your eye instead of the receiver (remember that fiber optic links work in the infrared so you can't see anything anyway.) 


Visual Fault Location

A higher power version of the tracer uses a laser that can also find faults. The red laser light is powerful enough to show breaks in fibers or high loss connectors. You can actually see the loss of the bright red light even through many yellow or orange simplex cable jackets except black or gray jackets. You can also use this gadget to optimize mechanical splices or prepolished-splice type fiber optic connectors. In fact- don't even think of doing one of those connectors without one ­ no other method will assure you of high yield with them. 


Visual Connector Inspection

Fiber optic microscopes are used to inspect connectors to check the quality of the termination procedure and diagnose problems. A well made connector will have a smooth , polished, scratch free finish and the fiber will not show any signs of cracks, chips or areas where the fiber is either protruding from the end of the ferrule or pulling back into it. 


The magnification for viewing connectors can be 30 to 400 power but it is best to use a medium magnification. The best microscopes allow you to inspect the connector from several angles, either by tilting the connector or having angle illumination to get the best picture of what's going on. Check to make sure the microscope has an easy-to-use adapter to attach the connectors of interest to the microscope. 


And remember to check that no power is present in the cable before you look at it in a microscope ­ protect your eyes! 


Optical Power - Power Or Loss? ("Absolute" Vs. "Relative")
Practically every measurement in fiber optics refers to optical power. The power output of a transmitter or the input to receiver are "absolute" optical power measurements, that is, you measure the actual value of the power. Loss is a "relative" power measurement, the difference between the power coupled into a component like a cable or a connector and the power that is transmitted through it. This difference is what we call optical loss and defines the performance of a cable, connector, splice, etc. 




Measuring Power

Power in a fiber optic system is like voltage in an electrical circuit - it's what makes things happen! It's important to have enough power, but not too much. Too little power and the receiver may not be able to distinguish the signal from noise; too much power overloads the receiver and causes errors too. 


Measuring power requires only a power meter (most come with a screw-on adapter that matches the connector being tested) and a little help from the network electronics to turn on the transmitter. Remember when you measure power, the meter must be set to the proper range (usually dBm, sometimes microwatts, but never "dB" ­ that's a relative power range used only for testing loss!) and the proper wavelengths ­ matching the source being used. Refer to the instructions that come with the test equipment for setup and measurement instructions (and don't wait until you get to the job site to try the equipment)! 


To measure power, attach the meter to the cable that has the output you want to measure. That can be at the receiver to measure receiver power, or to a reference test cable (tested and known to be good) that is attached to the transmitter, acting as the "source", to measure transmitter power. Turn on the transmitter/source and note the power the meter measures. Compare it to the specified power for the system and make sure it's enough power but not too much. 


Testing Loss
Loss testing is the difference between the power coupled into the cable at the transmitter end and what comes out at the receiver end. Testing for loss requires measuring the optical power lost in a cable (including connectors ,splices, etc.) with a fiber optic source and power meter by mating the cable being tested to known good reference cable. 


In addition to our power meter, we will need a test source. The test source should match the type of source (LED or laser) and wavelength (850, 1300, 1550 nm). Again, read the instructions that come with the unit carefully. 


We also need one or two reference cables, depending on the test we wish to perform. The accuracy of the measurement we make will depend on the quality of your reference cables. Always test your reference cables by the single ended method shown below to make sure they're good before you start testing other cables! 


Next we need to set our reference power for loss ­ our "0 dB" value. Correct setting of the launch power is critical to making good loss measurements! 




Clean Your Connectors And Set Up Your Equipment Like This:

Turn on the source and select the wavelength you want for the loss test. Turn on the meter, select the "dBm" or "dB" range and select the wavelength you want for the loss test. Measure the power at the meter. This is your reference power level for all loss measurements. If your meter has a "zero" function, set this as your "0" reference. 


Some reference books and manuals show setting the reference power for loss using both a launch and receive cable mated with a mating adapter. This method is acceptable for some tests, but will reduce the loss you measure by the amount of loss between your reference cables when you set your "0dB loss" reference. Also, if either the launch or receive cable is bad, setting the reference with both cables hides the fact. Then you could begin testing with bad launch cables making all your loss measurements wrong. EIA/TIA 568 calls for a single cable reference, while OFSTP-14 allows either method. 




Testing Loss

There are two methods that are used to measure loss, which we call "single-ended loss" and "double-ended loss". Single-ended loss uses only the launch cable, while double-ended loss uses a receive cable attached to the meter also. 


Single-ended loss is measured by mating the cable you want to test to the reference launch cable and measuring the power out the far end with the meter. When you do this you measure 1. the loss of the connector mated to the launch cable and 2. the loss of any fiber, splices or other connectors in the cable you are testing. This method is described in FOTP-171 and is shown in the drawing. Reverse the cable to test the connector on the other end. 


In a double-ended loss test, you attach the cable to test between two reference cables, one attached to the source and one to the meter. This way, you measure two connectors' loses, one on each end, plus the loss of all the cable or cables in between. This is the method specified in OFSTP-14, the test for loss in an installed cable plant. 


What Loss Should You Get When Testing Cables?
While it is difficult to generalize, here are some guidelines: 


- For each connector, figure 0.5 dB loss (0.7 max)
- For each splice, figure 0.2 dB
- For multimode fiber, the loss is about 3 dB per km for 850 nm sources, 1 dB per km for 1300 nm. This roughly translates into a loss of 0.1 dB per 100 feet for 850 nm, 0.1 dB per 300 feet for 1300 nm.
- For singlemode fiber, the loss is about 0.5 dB per km for 1300 nm sources, 0.4 dB per km for 1550 nm. 


This roughly translates into a loss of 0.1 dB per 600 feet for 1300 nm, 0.1 dB per 750 feet for 1300 nm. So for the loss of a cable plant, calculate the approximate loss as: 


(0.5 dB X # connectors) + (0.2 dB x # splices) + fiber loss on the total length of cable 


Troubleshooting Hints:
If you have high loss in a cable, make sure to reverse it and test in the opposite direction using the single-ended method. Since the single ended test only tests the connector on one end, you can isolate a bad connector - it's the one at the launch cable end (mated to the launch cable) on the test when you measure high loss. 


High loss in the double ended test should be isolated by retesting single-ended and reversing the direction of test to see if the end connector is bad. If the loss is the same, you need to either test each segment separately to isolate the bad segment or, if it is long enough, use an OTDR. 


If you see no light through the cable (very high loss - only darkness when tested with your visual tracer), it's probably one of the connectors, and you have few options. The best one is to isolate the problem cable, cut the connector of one end (flip a coin to choose) and hope it was the bad one (well, you have a 50-50 chance!) 


OTDR Testing
As we mentioned earlier, OTDRs are always used on OSP cables to verify the loss of each splice. But they are also used as troubleshooting tools. Let's look at how an OTDR works and see how it can help testing and troubleshooting. 


How OTDRs Work
Unlike sources and power meters which measure the loss of the fiber optic cable plant directly, the OTDR works indirectly. The source and meter duplicate the transmitter and receiver of the fiber optic transmission link, so the measurement correlates well with actual system loss. 


The OTDR, however, uses backscattered light of the fiber to imply loss. The OTDR works like RADAR, sending a high power laser light pulse down the fiber and looking for return signals from backscattered light in the fiber itself or reflected light from connector or splice interfaces. 


At any point in time, the light the OTDR sees is the light scattered from the pulse passing through a region of the fiber. Only a small amount of light is scattered back toward the OTDR, but with sensitive receivers and signal averaging, it is possible to make measurements over relatively long distances. Since it is possible to calibrate the speed of the pulse as it passes down the fiber, the OTDR can measure time, calculate the pulse position in the fiber and correlate what it sees in backscattered light with an actual location in the fiber. Thus it can create a display of the amount of backscattered light at any point in the fiber. 


Since the pulse is attenuated in the fiber as it passes along the fiber and suffers loss in connectors and splices, the amount of power in the test pulse decreases as it passes along the fiber in the cable plant under test. Thus the portion of the light being backscattered will be reduced accordingly, producing a picture of the actual loss occurring in the fiber. Some calculations are necessary to convert this information into a display, since the process occurs twice, once going out from the OTDR and once on the return path from the scattering at the test pulse. 





OTDR Testingt






There is a lot of information in an OTDR display. The slope of the fiber trace shows the attenuation coefficient of the fiber and is calibrated in dB/km by the OTDR. In order to measure fiber attenuation, you need a fairly long length of fiber with no distortions on either end from the OTDR resolution or overloading due to large reflections. If the fiber looks nonlinear at either end, especially near a reflective event like a connector, avoid that section when measuring loss. 


Connectors and splices are called "events" in OTDR jargon. Both should show a loss, but connectors and mechanical splices will also show a reflective peak so you can distinguish them from fusion splices. Also, the height of that peak will indicate the amount of reflection at the event, unless it is so large that it saturates the OTDR receiver. Then peak will have a flat top and tail on the far end, indicating the receiver was overloaded. The width of the peak shows the distance resolution of the OTDR, or how close it can detect events. 











OTDRs can also detect problems in the cable caused during installation. If a fiber is broken, it will show up as the end of the fiber much shorter than the cable or a high loss splice at the wrong place. If excessive stress is placed on the cable due to kinking or too tight a bend radius, it will look like a splice at the wrong location. 


OTDR Limitations
The limited distance resolution of the OTDR makes it very hard to use in a LAN or building environment where cables are usually only a few hundred meters long. The OTDR has a great deal of difficulty resolving features in the short cables of a LAN and is likely to show "ghosts" from reflections at connectors, more often than not simply confusing the user. 


Using The OTDR
When using an OTDR, there are a few cautions that will make testing easier and more understandable. First always use a long launch cable, which allows the OTDR to settle down after the initial pulse and provides a reference cable for testing the first connector on the cable. Always start with the OTDR set for the shortest pulse width for best resolution and a range at least 2 times the length of the cable you are testing. Make an initial trace and see how you need to change the parameters to get better results. 


Coming soon - our OTDR self-study course will teach you a lot more about how to use OTDRs! 


Restoration
The time may come when you have to troubleshoot and fix the cable plant. If you have a critical application or lots of network cable, you should be ready to do it yourself. Smaller networks can rely on a contractor. If you plan to do it yourself, you need to have equipment ready (extra cables, mechanical splices, quick termination connectors, etc., plus test equipment.) and someone who knows how to use it. 


We cannot emphasize more strongly the need to have good documentation on the cable plant. If you don't know where the cables go, how long they are or what they tested for loss, you will be spinning you wheels from the get-go. And you need tools to diagnose problems and fix them, and spares including a fusion splicer or some mechanical splices and spare cables. In fact, when you install cable, save the leftovers for restoration! And the first thing you must decide is if the problem is with the cables or the equipment using it. A simple power meter can test sources for output and receivers for input and a visual tracer will check for fiber continuity. If the problem is in the cable plant, the OTDR is the next tool needed to locate the fault. 


Fiber Optic Termination

We terminate fiber optic cable two ways - with connectors that can mate two fibers to create a temporary joint and/or connect the fiber to a piece of network gear or with splices which create a permanent joint between the two fibers. These terminations must be of the right style, installed in a manner that makes them have little light loss and protected against dirt or damage in use. No area of fiber optics has been given greater attention than termination. Manufacturers have come up with over 80 styles of connectors and and about a dozen ways to install them. There are two types of splices and many ways of implementing the splice. Fortunately for me and you, only a few types are used most applications. Different connectors and splice termination procedures are used for singlemode and multimode connectors, so make sure you know what the fiber will be before you specify connectors or splices! 


Connectors
We'll start our section on termination by considering connectors. Since fiber optic technology was introduced in the late 70s, numerous connector styles have been developed. Each new design was meant to offer better performance (less light loss and back reflection), easier and/or termination and lower cost. Of course, the marketplace determines which connectors are ultimately successful. 




Connector And Splice Loss Mechanisms

Connector and splice loss is caused by a number of factors. Loss is minimized when the two fiber cores are identical and perfectly aligned, the connectors or splices are properly finished and no dirt is present. Only the light that is coupled into the receiving fiber's core will propagate, so all the rest of the light becomes the connector or splice loss. 


End gaps cause two problems, insertion loss and return loss. The emerging cone of light from the connector will spill over the core of the receiving fiber and be lost. In addition, the air gap between the fibers causes a reflection when the light encounters the change n refractive index from the glass fiber to the air in the gap. This reflection (called fresnel reflection) amounts to about 5% in typical flat polished connectors, and means that no connector with an air gap can have less than 0.3 dB loss. This reflection is also referred to as back reflection or optical return loss, which can be a problem in laser based systems. Connectors use a number of polishing techniques to insure physical contact of the fiber ends to minimize back reflection. On mechanical splices, it is possible to reduce back reflection by using non-perpendicular cleaves, which cause back reflections to be absorbed in the cladding of the fiber. 


The end finish of the fiber must be properly polished to minimize loss. A rough surface will scatter light and dirt can scatter and absorb light. Since the optical fiber is so small, typical airborne dirt can be a major source of loss. Whenever connectors are not terminated, they should be covered to protect the end of the ferrule from dirt. One should never touch the end of the ferrule, since the oils on one's skin causes the fiber to attract dirt. Before connection and testing, it is advisable to clean connectors with lint-free wipes moistened with isopropyl alcohol. 


Two sources of loss are directional; numerical aperture (NA) and core diameter. Differences in these two will create connections that have different losses depending on the direction of light propagation. Light from a fiber with a larger NA will be more sensitive to angularity and end gap, so transmission from a fiber of larger NA to one of smaller NA will be higher loss than the reverse. Likewise, light from a larger fiber will have high loss coupled to a fiber of smaller diameter, while one can couple a small diameter fiber to a large diameter fiber with minimal loss, since it is much less sensitive to end gap or lateral offset. 


These fiber mismatches occur for two reasons. The occasional need to interconnect two dissimilar fibers and production variances in fibers of the same nominal dimensions. With two multimode fibers in usage today and two others which have been used occasionally in the past and several types of singlemode fiber in use, it is possible to sometimes have to connect dissimilar fibers or use systems designed for one fiber on another. Some system manufacturers provide guidelines on using various fibers, some don't. If you connect a smaller fiber to a larger one, the coupling losses will be minimal, often only the fresnel loss (about 0.3 dB). But connecting larger fibers to smaller ones results in substantial losses, not only due to the smaller cores size, but also the smaller NA of most small core fibers. 




Guide To Fiber Optic Connectors

Check out the "spotters guide" below and you will see the most common fiber optic connectors. (All the photos are to the same scale, so you can get an idea of the relative size of these connectors.) 


CONNECTORS
ST (an AT&T Trademark) is the most popular connector for multimode networks, like most buildings and campuses. It has a bayonet mount and a long cylindrical ferrule to hold the fiber. Most ferrules are ceramic, but some are metal or plastic. And because they are spring-loaded, you have to make sure they are seated properly. If you have high loss, reconnect them to see if it makes a difference.
FC/PC has been one of the most popular singlemode connectors for many years. It screws on firmly, but make sure you have the key aligned in the slot properly before tightening. It's being replaced by SCs and LCs.
SC is a snap-in connector that is widely used in singlemode systems for it's excellent performance. It's a snap-in connector that latches with a simple push-pull motion. It is also available in a duplex configuration.
Besides the SC Duplex, you may occasionally see the FDDI and ESCON* duplex connectors which mate to their specific networks. They are generally used to connect to the equipment from a wall outlet, but the rest of the network will have ST or SC connectors.
*ESCON is an IBM trademark


Below are some of the new Small Form Factor (SFF) connectors:
LC is a new connector that uses a 1.25 mm ferrule, half the size of the ST. Otherwise, it's a standard ceramic ferrule connector, easily terminated with any adhesive. Good performance, highly favored for singlemode.
MT-RJ is a duplex connector with both fibers in a single polymer ferrule. It uses pins for alignment and has male and female versions. Multimode only, field terminated only by prepolished/splice method.
Opti-Jack is a neat, rugged duplex connector cleverly designed aournd two ST-type ferrules in a package the size of a RJ-45. It has male and female (plug and jack) versions.
Volition is a slick, inexpensive duplex connector that uses no ferrule at all. It aligns fibers in a V-groove like a splice. Plug and jack versions, but field terminate jacks only.
E2000/LX-5 is like a LC but with a shutter over the end of the fiber.
MU looks a miniature SC with a 1.25 mm ferrule. It's more popular in Japan.
MT is a 12 fiber connector for ribbon cable. It's main use is for preterminated cable assemblies.




The ST/SC/FC/FDDI/ESON connectors have the same ferrule size - 2.5 mm or about 0.1 inch - so they can be mixed and matched to each other using hybrid mating adapters. This makes it convenient to test, since you can have a set of multimode reference test cables with ST connectors and adapt to all these connectors. Likewise, the LC, MU and E2000/LX-5 use the same ferrule but cross-mating adapters are not easy to find. 




Connector Types

The ST is still the most popular multimode connector because it is cheap and easy to install. The SC connector was specified as a standard by the old EIA/TIA 568A specification, but its higher cost and difficulty of installation (until recently) has limited its popularity. However, newer SCs are much better in both cost and installation ease, so it has been growing in use. The duplex FDDI, ESCON and SC connectors are used for patchcords to equipment and can be mated to ST or SC connectors at wall outlets. Singlemode networks use FC or SC connectors in about the same proportion as ST and SC in multimode installations. There are some D4s out there too. 


EIA/TIA 568 B allows any fiber optic connector as long as it has a FOCIS (Fiber Optic Connector Intermateability Standard) document behind it. This opened the way to the use of several new connectors, which we call the "Small Form Factor" (SFF) connectors, including AT&T LC, the MT-RJ, the Panduit "Opti-Jack," 3M's Volition, the E2000/LX-5 and MU. The LC has been particularly successful in the US. 




Connector Ferrule Shapes & Polishes

Fiber optic connectors can have several different ferrule shapes or finishes, usually referred to as polishes. early connectors, because they did not have keyed ferrules and could rotate in mating adapters, always had an air gap between the connectors to prevent them rotating and grinding scratches into the ends of the fibers. 


Beginning with the ST and FC which had keyed ferrules, the connectors were designed to contact tightly, what we now call physical contact (PC) connectors. Reducing the air gap reduced the loss and back reflection (very important to laser-based singlemode systems ), since light has a loss of about 5% (~0.25 dB) at each air gap and light is reflected back up the fiber. While air gap connectors usually had losses of 0.5 dB or more and return loss of 20 dB, PC connectors had typical losses of 0.3 dB and a return loss of 30 to 40 dB. 


Soon thereafter, it was determined that making the connector ferrules convex would produce an even better connection. The convex ferrule guaranteed the fiber cores were in contact. Losses were under 0.3dB and return loss 40 dB or better. The final solution for singlemode systems extremely sensitive to reflections, like CATV or high bitrate telco links, was to angle the end of the ferrule 8 degrees to create what we call an APC or angled PC connector. Then any reflected light is at an angle that is absorbed in the cladding of the fiber. 


Termination Procedures
Whatever you do, follow the manufacturer's termination instructions closely. Multimode connectors are usually installed in the field on the cables after pulling, while singlemode connectors are usually installed by splicing a factory-made "pigtail" onto the fiber. That is because the tolerances on singlemode terminations are much tighter and the polishing processes are more critical. You can install singlemode connectors in the field for low speed data networks, but you may not be able to get losses lower than 1 dB! Cables can be pulled with connectors already on them if, and a big if, you can deal with these two problems: First, the length must be precise. Too short and you have to pull another longer one (its not cost effective to splice), too long and you waste money and have to store the extra cable length. Secondly, the connectors must be protected. Some cable and connector manufacturers offer protective sleeves to cover the connectors, but you must still be much more careful in pulling cables. You might consider terminating one end and pulling the unterminated end to not risk the connectors. There is a growing movement to install preterminated systems but with the MT 12 multifiber connector. It's tiny ­ not much bigger than a ST or SC, but has up to 12 fibers. Manufactures sell multifiber cables with MTs on them that connect to preterminated patch panels with STs or SCs. Works well if you have a good designer and can live with the higher loss (~1 dB) typical of these connectors. 


Multimode Terminations: Several different types of terminations are available for multimode fibers. Each version has its advantages and disadvantages, so learning more about how each works helps decide which one to use. 


A note on adhesives: Most connectors use epoxies or other adhesives to hold the fiber in the connector. Use only the specified epoxy, as the fiber to ferrule bond is critical for low loss and long term reliability! We've seen people use hardware store epoxies, Crazy Glue, you name it! And they regretted doing it. 


Epoxy/Polish: Most connectors are the simple "epoxy/polish" type where the fiber is glued into the connector with epoxy and the end polished with special polishing film. These provide the most reliable connection, lowest losses (less than 0.5 dB) and lowest costs, especially if you are doing a lot of connectors. The epoxy can be allowed to set overnight or cured in an inexpensive oven. A "heat gun" should never be used to try to cure the epoxy faster as the uneven heat may not cure all the epoxy or may overheat some of it which will prevent it ever curing! 


"Hot Melt": This is a 3M trade name for a connector that already has the epoxy (actually a heat set glue) inside the connector. You strip the cable, insert it in the connector, crimp it, and put it in a special oven. In a few minutes, the glue is melted, so you remove the connector, let it cool and it is ready to polish. Fast and easy, low loss, but not as cheap as the epoxy type, it has become the favorite of lots of contractors who install relatively small quantities of connectors. 


Anaerobic Adhesives: These connectors use a quick setting adhesive to replace the epoxy. They work well if your technique is good, but often they do not have the wide temperature range of epoxies, so only use them indoors. A lot of installers are using Loctite 648, with or without the accellerator solution, that is neat and easy to use. 


Crimp/Polish: Rather than glue the fiber in the connector, these connectors use a crimp on the fiber to hold it in. Early types offered "iffy" performance, but today they are pretty good, if you practice a lot. Expect to trade higher losses for the faster termination speed. And they are more costly than epoxy polish types. A good choice if you only install small quantities and your customer will accept them. 


Prepolished/splice: Some manufacturers offer connectors that have a short stub fiber already epoxied into the ferrule and polished perfectly, so you just cleave a fiber and insert it like a splice. (See next section for splicing info.) While it sound like a great idea, it has several downsides. First it is very costly, five to ten times as much as an epoxy polish type. Second, you have to make a good cleave to make them low loss, and that is not as easy as you might think. Third, even if you do everything correctly, you loss will be higher, because you have a connector loss plus two splice losses at every connection! The best way to terminate them is to monitor the loss with a visual fault locator and "tweak" them. 


Hints For Doing Field Terminations
Here are a few things to remember when you are terminating connectors in the field. Following these guidelines will save you time, money and frustration: 


Choose the connector carefully and clear it with the customer if it is anything other than an epoxy/polish type. Some customers have strong opinions on the types or brands of connectors used in their job. Find out first, not later! 


Never, never, NEVER take a new connector in the field until you have installed enough of them in the office that you can put them on in your sleep. The field is no place to experiment or learn! It'll cost you big time! 


Have the right tools for the job. Make sure you have the proper tools and they are in good shape before you head out for the job. This includes all the termination tools, cable tools and test equipment. Do you know your test cables are good? Without that, you will test good terminations as bad every time. More and more installers are owning their own tools like auto mechanics, saying that is the only way to make sure the tools are properly cared for. 


Dust and dirt are your enemies. It's very hard to terminate or splice in a dusty place. Try to work in the cleanest possible location. Use lint-free wipes (not cotton swaps or rags made from old T-shirts!) to clean every connector before connecting or testing it. Don't work under heating vents, as they are blowing dirt down on you continuously. 


Don't overpolish. Contrary to common sense, too much polishing is just as bad as too little. The ceramic ferrule in most of today's connector is much harder than the glass fiber. Polish too much and you create a concave fiber surface, increasing the loss. A few swipes is all it takes. 


Remember singlemode fiber requires different connectors and polishing techniques. Most SM fiber is terminated by splicing on a preterminated pigtail, but you can put SM connectors on in the field if you know what you are doing. Expect much higher loss, approaching 1 dB and high back reflections, so don't try it for anything but data networks, not telco or CATV. 


Change polishing film regularly. Polishing builds up residue and dirt on the film that can cause problems after too many connectors and cause poor end finish. Check the manufacturers' specs. 


Put covers on connectors and patch panels when not in use. Keep them covered to keep them clean. 


Inspect and test, then document. It is very hard to troubleshoot cables when you don't know how long they are, where they go or how they tested originally! So keep good records, smart users require it and expect to pay extra for good records. 


Splicing
Splicing is only needed if the cable runs are too long for one straight pull or you need to mix a number of different types of cables (like bringing a 48 fiber cable in and splicing it to six 8 fiber cables - could you have used a breakout cable instead?) And of course, we use splices for restoration, after the number one problem of outside plant cables, a dig-up and cut of a buried cable, usually referred to as "backhoe fade" for obvious reasons! 


Splices are "permanent" connections between two fibers. There are two types of splices, fusion and mechanical, and the choice is usually based on cost or location. Most splicing is on long haul outside plant SM cables, not multimode LANs, so if you do outside plant SM jobs, you will want to learn how to fusion splice. If you do mostly MM LANs, you may never see a splice. 


Splices
Fusion Splices are made by "welding" the two fibers together usually by an electric arc. Obviously, you don't do that in an explosive atmosphere (at least not more than once!), so fusion splicing is usually done above ground in a truck or trailer set up for the purpose. Good fusion splicers cost $15,000 to $40,000, but the splices only cost a few dollars each. Today's singlemode fusion splicers are automated and you have a hard time making a bad splice. The biggest application is singlemode fibers in outside plant installations. 


Mechanical Splices are alignment gadgets that hold the ends of two fibers together with some index matching gel or glue between them. There are a number of types of mechanical splices, like little glass tubes or V-shaped metal clamps. The tools to make mechanical splices are cheap, but the splices themselves are expensive. Many mechanical splices are used for restoration, but they can work well with both singlemode and multimode fiber, with practice. 


Which Splice?
If cost is the issue, we've given you the clues to make a choice: fusion is expensive equipment and cheap splices, while mechanical is cheap equipment and expensive splices. So if you make a lot of splices (like thousands in an big telco or CATV network) use fusion splices. If you need just a few, use mechanical splices. Fusion splices give very low back reflections and are preferred for singlemode high speed digital or CATV networks. However, they don't work too well on multimode splices, so mechanical splices are preferred for MM, unless it is an underwater or aerial application, where the greater reliability of the fusion splice is preferred. 


alishah841@hotmail.com +923459637770 +923459684333

Fiber Optic Technologies

Fiber-Optic Applications
The use and demand for optical fiber has grown tremendously and optical-fiber applications are numerous. Telecommunication applications are widespread, ranging from global networks to desktop computers. These involve the transmission of voice, data, or video over distances of less than a meter to hundreds of kilometers, using one of a few standard fiber designs in one of several cable designs.
Carriers use optical fiber to carry plain old telephone service (POTS) across their nationwide networks. Local exchange carriers (LECs) use fiber to carry this same service between central office switches at local levels, and sometimes as far as the neighborhood or individual home (fiber to the home [FTTH]).
Optical fiber is also used extensively for transmission of data. Multinational firms need secure, reliable systems to transfer data and financial information between buildings to the desktop terminals or computers and to transfer data around the world. Cable television companies also use fiber for delivery of digital video and data services. The high bandwidth provided by fiber makes it the perfect choice for transmitting broadband signals, such as high-definition television (HDTV) telecasts.
Intelligent transportation systems, such as smart highways with intelligent traffic lights, automated tollbooths, and changeable message signs, also use fiber-optic-based telemetry systems.
Another important application for optical fiber is the biomedical industry. Fiber-optic systems are used in most modern telemedicine devices for transmission of digital diagnostic images. Other applications for optical fiber include space, military, automotive, and the industrial sector.

The Physics Behind Fiber Optics
A fiber-optic cable is composed of two concentric layers, called the core and the cladding, as illustrated in Figure 3-1. The core and cladding have different refractive indices, with the core having a refractive index of n1, and the cladding having a refractive index of n2. The index of refraction is a way of measuring the speed of light in a material. Light travels fastest in a vacuum. The actual speed of light in a vacuum is 300,000 kilometers per second, or 186,000 miles per second.
Figure xxxFigure 3-1 Cross Section of a Fiber-Optic Cable
The index of refraction is calculated by dividing the speed of light in a vacuum by the speed of light in another medium, as shown in the following formula:
Refractive index of the medium = [Speed of light in a vacuum/Speed of light 
              in the medium]
The refractive index of the core, n1, is always greater than the index of the cladding, n2. Light is guided through the core, and the fiber acts as an optical waveguide.
Figure 3-2 shows the propagation of light down the fiber-optic cable using the principle of total internal reflection. As illustrated, a light ray is injected into the fiber-optic cable on the left. If the light ray is injected and strikes the core-to-cladding interface at an angle greater than the critical angle with respect to the normal axis, it is reflected back into the core. Because the angle of incidence is always equal to the angle of reflection, the reflected light continues to be reflected. The light ray then continues bouncing down the length of the fiber-optic cable. If the angle of incidence at the core-to-cladding interface is less than the critical angle, both reflection and refraction take place. Because of refraction at each incidence on the interface, the light beam attenuates and dies off over a certain distance.
Figure 2Figure 3-2 Total Internal Reflection
The critical angle is fixed by the indices of refraction of the core and cladding and is computed using the following formula:
qc = cos–1 (n2/n1)
The critical angle can be measured from the normal or cylindrical axis of the core. If n1 = 1.557 and n2 = 1.343, for example, the critical angle is 30.39 degrees.
Figure 3-2 shows a light ray entering the core from the outside air to the left of the cable. Light must enter the core from the air at an angle less than an entity known as the acceptance angle (a):
qa = sin–1 [(n1/n0) sin(qc)]
In the formula, n0 is the refractive index of air and is equal to one. This angle is measured from the cylindrical axis of the core. In the preceding example, the acceptance angle is 51.96 degrees.
The optical fiber also has a numerical aperture (NA). The NA is given by the following formula:
NA = Sin qa = ?(n12 – n22) 
From a three-dimensional perspective, to ensure that the signals reflect and travel correctly through the core, the light must enter the core through an acceptance cone derived by rotating the acceptance angle about the cylindrical fiber axis. As illustrated in Figure 3-3, the size of the acceptance cone is a function of the refractive index difference between the core and the cladding. There is a maximum angle from the fiber axis at which light can enter the fiber so that it will propagate, or travel, in the core of the fiber. The sine of this maximum angle is the NA of the fiber. The NA in the preceding example is 0.787. Fiber with a larger NA requires less precision to splice and work with than fiber with a smaller NA. Single-mode fiber has a smaller NA than MMF.
Figure 3Figure 3-3 Acceptance Cone

Performance Considerations

The amount of light that can be coupled into the core through the external acceptance angle is directly proportional to the efficiency of the fiber-optic cable. The greater the amount of light that can be coupled into the core, the lower the bit error rate (BER), because more light reaches the receiver. The attenuation a light ray experiences in propagating down the core is inversely proportional to the efficiency of the optical cable because the lower the attenuation in propagating down the core, the lower the BER. This is because more light reaches the receiver. Also, the less chromatic dispersion realized in propagating down the core, the faster the signaling rate and the higher the end-to-end data rate from source to destination. The major factors that affect performance considerations described in this paragraph are the size of the fiber, the composition of the fiber, and the mode of propagation.

Optical-Power Measurement

The power level in optical communications is of too wide a range to express on a linear scale. A logarithmic scale known as decibel (dB) is used to express power in optical communications.
The wide range of power values makes decibel a convenient unit to express the power levels that are associated with an optical system. The gain of an amplifier or attenuation in fiber is expressed in decibels. The decibel does not give a magnitude of power, but it is a ratio of the output power to the input power.
Loss or gain = 10log10(POUTPUT/PINPUT)
The decibel milliwatt (dBm) is the power level related to 1 milliwatt (mW). Transmitter power and receiver dynamic ranges are measured in dBm. A 1-mW signal has a level of 0 dBm.
Signals weaker than 1 mW have negative dBm values, whereas signals stronger than 1 mW have positive dBm values.


Optical-Cable Construction
The core is the highly refractive central region of an optical fiber through which light is transmitted. The standard telecommunications core diameter in use with SMF is between 8 m and 10 m, whereas the standard core diameter in use with MMF is between 50 m and 62.5 m. Figure 3-4 shows the core diameter for SMF and MMF cable. The diameter of the cladding surrounding each of these cores is 125 m. Core sizes of 85 m and 100 m were used in early applications, but are not typically used today. The core and cladding are manufactured together as a single solid component of glass with slightly different compositions and refractive indices. The third section of an optical fiber is the outer protective coating known as the coating. The coating is typically an ultraviolet (UV) light-cured acrylate applied during the manufacturing process to provide physical and environmental protection for the fiber. The buffer coating could also be constructed out of one or more layers of polymer, nonporous hard elastomers or high-performance PVC materials. The coating does not have any optical properties that might affect the propagation of light within the fiber-optic cable. During the installation process, this coating is stripped away from the cladding to allow proper termination to an optical transmission system. The coating size can vary, but the standard sizes are 250 m and 900 m. The 250-m coating takes less space in larger outdoor cables. The 900-m coating is larger and more suitable for smaller indoor cables.
Figure 4Figure 3-4 Optical-Cable Construction
Fiber-optic cable sizes are usually expressed by first giving the core size followed by the cladding size. Consequently, 50/125 indicates a core diameter of 50 microns and a cladding diameter of 125 microns, and 8/125 indicates a core diameter of 8 microns and a cladding diameter of 125 microns. The larger the core, the more light can be coupled into it from the external acceptance angle cone. However, larger-diameter cores can actually allow in too much light, which can cause receiver saturation problems. The 8/125 cable is often used when a fiber-optic data link operates with single-mode propagation, whereas the 62.5/125 cable is often used in a fiber-optic data link that operates with multimode propagation.
Three types of material make up fiber-optic cables:
  • Glass
  • Plastic
  • Plastic-clad silica (PCS)
These three cable types differ with respect to attenuation. Attenuation is principally caused by two physical effects: absorption and scattering. Absorption removes signal energy in the interaction between the propagating light (photons) and molecules in the core. Scattering redirects light out of the core to the cladding. When attenuation for a fiber-optic cable is dealt with quantitatively, it is referenced for operation at a particular optical wavelength, a window, where it is minimized. The most common peak wavelengths are 780 nm, 850 nm, 1310 nm, 1550 nm, and 1625 nm. The 850-nm region is referred to as the first window (as it was used initially because it supported the original LED and detector technology). The 1310-nm region is referred to as the second window, and the 1550-nm region is referred to as the third window.

Glass Fiber-Optic Cable

Glass fiber-optic cable has the lowest attenuation. A pure-glass, fiber-optic cable has a glass core and a glass cladding. This cable type has, by far, the most widespread use. It has been the most popular with link installers, and it is the type of cable with which installers have the most experience. The glass used in a fiber-optic cable is ultra-pure, ultra-transparent, silicon dioxide, or fused quartz. During the glass fiber-optic cable fabrication process, impurities are purposely added to the pure glass to obtain the desired indices of refraction needed to guide light. Germanium, titanium, or phosphorous is added to increase the index of refraction. Boron or fluorine is added to decrease the index of refraction. Other impurities might somehow remain in the glass cable after fabrication. These residual impurities can increase the attenuation by either scattering or absorbing light.

Plastic Fiber-Optic Cable

Plastic fiber-optic cable has the highest attenuation among the three types of cable. Plastic fiber-optic cable has a plastic core and cladding. This fiber-optic cable is quite thick. Typical dimensions are 480/500, 735/750, and 980/1000. The core generally consists of polymethylmethacrylate (PMMA) coated with a fluropolymer. Plastic fiber-optic cable was pioneered principally for use in the automotive industry. The higher attenuation relative to glass might not be a serious obstacle with the short cable runs often required in premise data networks. The cost advantage of plastic fiber-optic cable is of interest to network architects when they are faced with budget decisions. Plastic fiber-optic cable does have a problem with flammability. Because of this, it might not be appropriate for certain environments and care has to be taken when it is run through a plenum. Otherwise, plastic fiber is considered extremely rugged with a tight bend radius and the capability to withstand abuse.

Plastic-Clad Silica (PCS) Fiber-Optic Cable

The attenuation of PCS fiber-optic cable falls between that of glass and plastic. PCS fiber-optic cable has a glass core, which is often vitreous silica, and the cladding is plastic, usually a silicone elastomer with a lower refractive index. PCS fabricated with a silicone elastomer cladding suffers from three major defects. First, it has considerable plasticity, which makes connector application difficult. Second, adhesive bonding is not possible. And third, it is practically insoluble in organic solvents. These three factors keep this type of fiber-optic cable from being particularly popular with link installers. However, some improvements have been made in recent years.
NOTE
For data center premise cables, the jacket color depends on the fiber type in the cable. For cables containing SMFs, the jacket color is typically yellow, whereas for cables containing MMFs, the jacket color is typically orange. For outside plant cables, the standard jacket color is typically black.

Multifiber Cable Systems

Multifiber systems are constructed with strength members that resist crushing during cable pulling and bends. The outer cable jackets are OFNR (riser rated), OFNP (plenum rated), or LSZH (low-smoke, zero-halogen rated). The OFNR outer jackets are composed of flame-retardant PVC or fluoropolymers. The OFNP jackets are composed of plenum PVC, whereas the LSZH jackets are halogen-free and constructed out of polyolefin compounds. Figure 3-5 shows a multiribbon, 24-fiber, ribbon-cable system. Ribbon cables are extensively used for inside plant and datacenter applications. Individual ribbon subunit cables use the MTP/MPO connector assemblies. Ribbon cables have a flat ribbon-like structure that enables installers to save conduit space as they install more cables in a particular conduit.
Figure 5Figure 3-5 Inside Plant Ribbon-Cable System
Figure 3-6 shows a typical six-fiber, inside-plant cable system. The central core is composed of a dielectric strength member with a dielectric jacket. The individual fibers are positioned around the dielectric strength member. The individual fibers have a strippable buffer coating. Typically, the strippable buffer is a 900-m tight buffer. Each individual coated fiber is surrounded with a subunit jacket. Aramid yarn strength members surround the individual subunits. Some cable systems have an outer strength member that provides protection to the entire enclosed fiber system. Kevlar is a typical material used for constructing the outer strength member for premise cable systems. The outer jacket is OFNP, OFNR, or LSZH.
Figure 6Figure 3-6 Cross Section of Inside-Plant Cables
Figure 3-7 shows a typical armored outside-plant cable system. The central core is composed of a dielectric with a dielectric jacket or steel strength member. The individual gel-filled subunit buffer tubes are positioned around the central strength member. Within the subunit buffer tube, six fibers are positioned around an optional dielectric strength member. The individual fibers have a strippable buffer coating. All six subunit buffer tubes are enclosed within a binder that contains an interstitial filling or water-blocking compound. An outer strength member, typically constructed of aramid Kevlar strength members encloses the binder. The outer strength member is surrounded by an inner medium-density polyethylene (MDPE) jacket. The corrugated steel armor layer between the outer high-density polyethylene (HDPE) jacket, and the inner MDPE jacket acts as an external strength member and provides physical protection. Conventional deep-water submarine cables use dual armor and a special hermetically sealed copper tube to protect the fibers from the effects of deep-water environments. However, shallow-water applications use cables similar to those shown in Figure 3-7 with an asphalt compound interstitial filling.


Fiber-Optic Characteristics
Optical-fiber systems have many advantages over metallic-based communication systems. These advantages include interference, attenuation, and bandwidth characteristics. Furthermore, the relatively smaller cross section of fiber-optic cables allows room for substantial growth of the capacity in existing conduits. Fiber-optic characteristics can be classified as linear and nonlinear. Nonlinear characteristics are influenced by parameters, such as bit rates, channel spacing, and power levels.

Interference

Light signals traveling via a fiber-optic cable are immune from electromagnetic interference (EMI) and radio-frequency interference (RFI). Lightning and high-voltage interference is also eliminated. A fiber network is best for conditions in which EMI or RFI interference is heavy or safe operation free from sparks and static is a must. This desirable property of fiber-optic cable makes it the medium of choice in industrial and biomedical networks. It is also possible to place fiber cable into natural-gas pipelines and use the pipelines as the conduit.

Linear Characteristics

Linear characteristics include attenuation, chromatic dispersion (CD), polarization mode dispersion (PMD), and optical signal-to-noise ratio (OSNR).

Attenuation

Several factors can cause attenuation, but it is generally categorized as either intrinsic or extrinsic. Intrinsic attenuation is caused by substances inherently present in the fiber, whereas extrinsic attenuation is caused by external forces such as bending. The attenuation coefficient α is expressed in decibels per kilometer and represents the loss in decibels per kilometer of fiber.

Intrinsic Attenuation

Intrinsic attenuation results from materials inherent to the fiber. It is caused by impurities in the glass during the manufacturing process. As precise as manufacturing is, there is no way to eliminate all impurities. When a light signal hits an impurity in the fiber, one of two things occurs: It scatters or it is absorbed. Intrinsic loss can be further characterized by two components:
  • Material absorption
  • Rayleigh scattering
Material Absorption@Material absorption occurs as a result of the imperfection and impurities in the fiber. The most common impurity is the hydroxyl (OH-) molecule, which remains as a residue despite stringent manufacturing techniques. Figure 3-12 shows the variation of attenuation with wavelength measured over a group of fiber-optic cable material types. The three principal windows of operation include the 850-nm, 1310-nm, and 1550-nm wavelength bands. These correspond to wavelength regions in which attenuation is low and matched to the capability of a transmitter to generate light efficiently and a receiver to carry out detection.
Figure 12Figure 3-12 Attenuation Versus Wavelength
The OH- symbols indicate that at the 950-nm, 1380-nm, and 2730-nm wavelengths, the presence of hydroxyl radicals in the cable material causes an increase in attenuation. These radicals result from the presence of water remnants that enter the fiber-optic cable material through either a chemical reaction in the manufacturing process or as humidity in the environment. The variation of attenuation with wavelength due to the water peak for standard, single-mode fiber-optic cable occurs mainly around 1380 nm. Recent advances in manufacturing have overcome the 1380-nm water peak and have resulted in zero-water-peak fiber (ZWPF). Examples of these fibers include SMF-28e from Corning and the Furukawa-Lucent OFS AllWave. Absorption accounts for three percent to five percent of fiber attenuation. This phenomenon causes a light signal to be absorbed by natural impurities in the glass and converted to vibration energy or some other form of energy such as heat. Unlike scattering, absorption can be limited by controlling the amount of impurities during the manufacturing process. Because most fiber is extremely pure, the fiber does not heat up because of absorption.
Rayleigh Scattering@As light travels in the core, it interacts with the silica molecules in the core. Rayleigh scattering is the result of these elastic collisions between the light wave and the silica molecules in the fiber. Rayleigh scattering accounts for about 96 percent of attenuation in optical fiber. If the scattered light maintains an angle that supports forward travel within the core, no attenuation occurs. If the light is scattered at an angle that does not support continued forward travel, however, the light is diverted out of the core and attenuation occurs. Depending on the incident angle, some portion of the light propagates forward and the other part deviates out of the propagation path and escapes from the fiber core. Some scattered light is reflected back toward the light source. This is a property that is used in an optical time domain reflectometer (OTDR) to test fibers. The same principle applies to analyzing loss associated with localized events in the fiber, such as splices.
Short wavelengths are scattered more than longer wavelengths. Any wavelength that is below 800 nm is unusable for optical communication because attenuation due to Rayleigh scattering is high. At the same time, propagation above 1700 nm is not possible due to high losses resulting from infrared absorption.

Extrinsic Attenuation

Extrinsic attenuation can be caused by two external mechanisms: macrobending or microbending. Both cause a reduction of optical power. If a bend is imposed on an optical fiber, strain is placed on the fiber along the region that is bent. The bending strain affects the refractive index and the critical angle of the light ray in that specific area. As a result, light traveling in the core can refract out, and loss occurs.
A macrobend is a large-scale bend that is visible, and the loss is generally reversible after bends are corrected. To prevent macrobends, all optical fiber has a minimum bend radius specification that should not be exceeded. This is a restriction on how much bend a fiber can withstand before experiencing problems in optical performance or mechanical reliability.
The second extrinsic cause of attenuation is a microbend. Microbending is caused by imperfections in the cylindrical geometry of fiber during the manufacturing process. Microbending might be related to temperature, tensile stress, or crushing force. Like macrobending, microbending causes a reduction of optical power in the glass. Microbending is very localized, and the bend might not be clearly visible on inspection. With bare fiber, microbending can be reversible.

Chromatic Dispersion

Chromatic dispersion is the spreading of a light pulse as it travels down a fiber. Light has a dual nature and can be considered from an electromagnetic wave as well as quantum perspective. This enables us to quantify it as waves as well as quantum particles. During the propagation of light, all of its spectral components propagate accordingly. These spectral components travel at different group velocities that lead to dispersion called group velocity dispersion (GVD). Dispersion resulting from GVD is termed chromatic dispersion due to its wavelength dependence. The effect of chromatic dispersion is pulse spread.
As the pulses spread, or broaden, they tend to overlap and are no longer distinguishable by the receiver as 0s and 1s. Light pulses launched close together (high data rates) that spread too much (high dispersion) result in errors and loss of information. Chromatic dispersion occurs as a result of the range of wavelengths present in the light source. Light from lasers and LEDs consists of a range of wavelengths, each of which travels at a slightly different speed. Over distance, the varying wavelength speeds cause the light pulse to spread in time. This is of most importance in single-mode applications. Modal dispersion is significant in multimode applications, in which the various modes of light traveling down the fiber arrive at the receiver at different times, causing a spreading effect. Chromatic dispersion is common at all bit rates. Chromatic dispersion can be compensated for or mitigated through the use of dispersion-shifted fiber (DSF). DSF is fiber doped with impurities that have negative dispersion characteristics. Chromatic dispersion is measured in ps/nm-km. A 1-dB power margin is typically reserved to account for the effects of chromatic dispersion.

Polarization Mode Dispersion

Polarization mode dispersion (PMD) is caused by asymmetric distortions to the fiber from a perfect cylindrical geometry. The fiber is not truly a cylindrical waveguide, but it can be best described as an imperfect cylinder with physical dimensions that are not perfectly constant. The mechanical stress exerted upon the fiber due to extrinsically induced bends and stresses caused during cabling, deployment, and splicing as well as the imperfections resulting from the manufacturing process are the reasons for the variations in the cylindrical geometry.
Single-mode optical fiber and components support one fundamental mode, which consists of two orthogonal polarization modes. This asymmetry introduces small refractive index differences for the two polarization states. This characteristic is known asbirefringence. Birefringence causes one polarization mode to travel faster than the other, resulting in a difference in the propagation time, which is called the differential group delay (DGD). DGD is the unit that is used to describe PMD. DGD is typically measured in picoseconds. A fiber that acquires birefringence causes a propagating pulse to lose the balance between the polarization components. This leads to a stage in which different polarization components travel at different velocities, creating a pulse spread as shown in Figure 3-13. PMD can be classified as first-order PMD, also known as DGD, and second-order PMD (SOPMD). The SOPMD results from dispersion that occurs because of the signal's wavelength dependence and spectral width.
PMD is not an issue at low bit rates but becomes an issue at bit rates in excess of 5 Gbps. PMD is noticeable at high bit rates and is a significant source of impairment for ultra-long-haul systems. PMD compensation can be achieved by using PMD compensators that contain dispersion-maintaining fibers with degrees of birefringence in them. The introduced birefringence negates the effects of PMD over a length of transmission. For error-free transmission, PMD compensation is a useful technique for long-haul and metropolitan-area networks running at bit rates greater than 10 Gbps. Note in Figure 3-13 that the DGD is the difference between Z1 and Z2. The PMD value of the fiber is the mean value over time or frequency of the DGD and is represented as ps/ km. A 0.5-dB power margin is typically reserved to account for the effects of PMD at high bit rates.
Figure 13Figure 3-13 Polarization Mode Dispersion

Polarization Dependent Loss

Polarization dependent loss (PDL) refers to the difference in the maximum and minimum variation in transmission or insertion loss of an optical device over all states of polarization (SOP) and is expressed in decibels. A typical PDL for a simple optical connector is less than .05 dB and varies from component to component. Typically, the PDL for an optical add/drop multiplexer (OADM) is around 0.3 dB. The complete polarization characterization of optical signals and components can be determined using an optical polarization analyzer.

Optical Signal-to-Noise Ratio

The optical signal-to-noise ratio (OSNR) specifies the ratio of the net signal power to the net noise power and thus identifies the quality of the signal. Attenuation can be compensated for by amplifying the optical signal. However, optical amplifiers amplify the signal as well as the noise. Over time and distance, the receivers cannot distinguish the signal from the noise, and the signal is completely lost. Regeneration helps mitigate these undesirable effects before they can render the system unusable and ensures that the signal can be detected at the receiver. Optical amplifiers add a certain amount of noise to the channel. Active devices, such as lasers, also add noise. Passive devices, such as taps and the fiber, can also add noise components. In the calculation of system design, however, optical amplifier noise is considered the predominant source for OSNR penalty and degradation.
OSNR is an important and fundamental system design consideration. Another parameter considered by designers is the Q-factor. The Q-factor, a function of the OSNR, provides a qualitative description of the receiver performance. The Q-factor suggests the minimum signal-to-noise ratio (SNR) required to obtain a specific BER for a given signal. OSNR is measured in decibels. The higher the bit rate, the higher the OSNR ratio required. For OC-192 transmissions, the OSNR should be at least 27 to 31 dB compared to 18 to 21 dB for OC-48.

Nonlinear Characteristics

Nonlinear characteristics include self-phase modulation (SPM), cross-phase modulation (XPM), four-wave mixing (FWM), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS).

Self-Phase Modulation

Phase modulation of an optical signal by itself is known as self-phase modulation (SPM). SPM is primarily due to the self-modulation of the pulses. Generally, SPM occurs in single-wavelength systems. At high bit rates, however, SPM tends to cancel dispersion. SPM increases with high signal power levels. In fiber plant design, a strong input signal helps overcome linear attenuation and dispersion losses. However, consideration must be given to receiver saturation and to nonlinear effects such as SPM, which occurs with high signal levels. SPM results in phase shift and a nonlinear pulse spread. As the pulses spread, they tend to overlap and are no longer distinguishable by the receiver. The acceptable norm in system design to counter the SPM effect is to take into account a power penalty that can be assumed equal to the negative effect posed by XPM. A 0.5-dB power margin is typically reserved to account for the effects of SPM at high bit rates and power levels.

Cross-Phase Modulation

Cross-phase modulation (XPM) is a nonlinear effect that limits system performance in wavelength-division multiplexed (WDM) systems. XPM is the phase modulation of a signal caused by an adjacent signal within the same fiber. XPM is related to the combination (dispersion/effective area). CPM results from the different carrier frequencies of independent channels, including the associated phase shifts on one another. The induced phase shift is due to the walkover effect, whereby two pulses at different bit rates or with different group velocities walk across each other. As a result, the slower pulse sees the walkover and induces a phase shift. The total phase shift depends on the net power of all the channels and on the bit output of the channels. Maximum phase shift is produced when bits belonging to high-powered adjacent channels walk across each other.
XPM can be mitigated by carefully selecting unequal bit rates for adjacent WDM channels. XPM, in particular, is severe in long-haul WDM networks, and the acceptable norm in system design to counter this effect is to take into account a power penalty that can be assumed equal to the negative effect posed by XPM. A 0.5-dB power margin is typically reserved to account for the effects of XPM in WDM fiber systems.

Four-Wave Mixing

FWM can be compared to the intermodulation distortion in standard electrical systems. When three wavelengths (λ1, λ 2, and λ 3) interact in a nonlinear medium, they give rise to a fourth wavelength (λ 4), which is formed by the scattering of the three incident photons, producing the fourth photon. This effect is known as four-wave mixing (FWM)and is a fiber-optic characteristic that affects WDM systems.
The effects of FWM are pronounced with decreased channel spacing of wavelengths and at high signal power levels. High chromatic dispersion also increases FWM effects. FWM also causes interchannel cross-talk effects for equally spaced WDM channels. FWM can be mitigated by using uneven channel spacing in WDM systems or nonzero dispersion-shifted fiber (NZDSF). A 0.5-dB power margin is typically reserved to account for the effects of FWM in WDM systems.

Stimulated Raman Scattering

When light propagates through a medium, the photons interact with silica molecules during propagation. The photons also interact with themselves and cause scattering effects, such as stimulated Raman scattering (SRS), in the forward and reverse directions of propagation along the fiber. This results in a sporadic distribution of energy in a random direction.
SRS refers to lower wavelengths pumping up the amplitude of higher wavelengths, which results in the higher wavelengths suppressing signals from the lower wavelengths. One way to mitigate the effects of SRS is to lower the input power. In SRS, a low-wavelength wave called Stoke's wave is generated due to the scattering of energy. This wave amplifies the higher wavelengths. The gain obtained by using such a wave forms the basis of Raman amplification. The Raman gain can extend most of the operating band (C- and L-band) for WDM networks. SRS is pronounced at high bit rates and high power levels. The margin design requirement to account for SRS/SBS is 0.5 dB.

Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) is due to the acoustic properties of photon interaction with the medium. When light propagates through a medium, the photons interact with silica molecules during propagation. The photons also interact with themselves and cause scattering effects such as SBS in the reverse direction of propagation along the fiber. In SBS, a low-wavelength wave called Stoke's wave is generated due to the scattering of energy. This wave amplifies the higher wavelengths. The gain obtained by using such a wave forms the basis of Brillouin amplification. The Brillouin gain peaks in a narrow peak near the C-band. SBS is pronounced at high bit rates and high power levels. The margin design requirement to account for SRS/SBS is 0.5 dB.










Splicing

Fiber-optic cables might have to be spliced together for a number of reasons—for example, to realize a link of a particular length. Another reason might involve backhoe fade, in which case a fiber-optic cable might have been ripped apart due to trenching work. The network installer might have in his inventory several fiber-optic cables, but none long enough to satisfy the required link length. Situations such as this often arise because cable manufacturers offer cables in limited lengths—usually 1 to 6 km. A link of 10 km can be installed by splicing several fiber-optic cables together. The installer can then satisfy the distance requirement and avoid buying a new fiber-optic cable. Splices might be required at building entrances, wiring closets, couplers, and literally any intermediate point between a transmitter and receiver.
Connecting two fiber-optic cables requires precise alignment of the mated fiber cores or spots in a single-mode fiber-optic cable. This is required so that nearly all the light is coupled from one fiber-optic cable across a junction to the other fiber-optic cable. Actual contact between the fiber-optic cables is not even mandatory.
There are two principal types of splices: fusion and mechanical. Fusion splices use an electric arc to weld two fiber-optic cables together. The process of fusion splicing involves using localized heat to melt or fuse the ends of two optical fibers together. The splicing process begins by preparing each fiber end for fusion. Fusion splicing requires that all protective coatings be removed from the ends of each fiber. The fiber is then cleaved using the score-and-break method. The quality of each fiber end is inspected using a microscope. In fusion splicing, splice loss is a direct function of the angles and quality of the two fiber-end faces.
The basic fusion-splicing apparatus consists of two fixtures on which the fibers are mounted with two electrodes. An inspection microscope assists in the placement of the prepared fiber ends into a fusion-splicing apparatus. The fibers are placed into the apparatus, aligned, and then fused together. Initially, fusion splicing used nichrome wire as the heating element to melt or fuse fibers together. New fusion-splicing techniques have replaced the nichrome wire with carbon dioxide (CO2) lasers, electric arcs, or gas flames to heat the fiber ends, causing them to fuse together. Arc fusion splicers can splice single fibers or 12- and 24-fiber-count ribbon fibers at the same time. The small size of the fusion splice and the development of automated fusion-splicing machines have made electric arc fusion one of the most popular splicing techniques in commercial applications. The splices offer sophisticated, computer-controlled alignment of fiber-optic cables to achieve losses as low as 0.02 dB.
Splices can also be used as optical attenuators if there is a need to attenuate a high-powered signal. Splice losses of up to 10.0 dB can be programmed and inserted into the cable if desired. This way, the splice can act as an in-line attenuator with the characteristic nonreflectance of a fusion splice. Typical fusion-splice losses can be estimated at 0.02 dB for loss-budget calculation purposes. Mechanical splices are easily implemented in the field, require little or no tooling, and offer losses of about 0.5 to 0.75 dB.
















Fiber-Optic Communications System

As depicted in Figure 3-16, information (voice, data, and video) from the source is encoded into electrical signals that can drive the transmitter. The fiber acts as an optical waveguide for the photons as they travel down the optical path toward the receiver. At the detector, the signals undergo an optical-to-electrical (OE) conversion, are decoded, and are sent to their destination.
Figure 16Figure 3-16 Fiber-Optic Communication System

Transmitter

The transmitter component of Figure 3-16 serves two functions. First, it must be a source of the light launched into the fiber-optic cable. Second, it must modulate this light to represent the binary data that it receives from the source. A transmitter's physical dimensions must be compatible with the size of the fiber-optic cable being used. This means that the transmitter must emit light in a cone with a cross-sectional diameter of 8 to 100 microns; otherwise, it cannot be coupled into the fiber-optic cable. The optical source must be able to generate enough optical power so that the desired BER can be met over the optical path. There should be high efficiency in coupling the light generated by the optical source into the fiber-optic cable, and the optical source should have sufficient linearity to prevent the generation of harmonics and intermodulation distortion. If such interference is generated, it is extremely difficult to remove. This would cancel the interference resistance benefits of the fiber-optic cable. The optical source must be easily modulated with an electrical signal and must be capable of high-speed modulation; otherwise, the bandwidth benefits of the fiber-optic cable are lost. Finally, there are the usual requirements of small size, low weight, low cost, and high reliability. The transmitter is typically pulsed at the incoming frequency and performs a transducer electrical-to-optical (EO) conversion. Light-emitting diodes (LEDs) or vertical cavity surface emitting lasers (VCSELs) are used to drive MMF systems, whereas laser diodes are used to drive SMF systems. Two types of light-emitting junction diodes can be used as the optical source of the transmitter. These are the LED and the laser diode (LD). LEDs are simpler and generate incoherent, lower-power light. LEDs are used to drive MMF. LDs generate coherent, higher-power light and are used to drive SMF.
Figure 3-17 shows the optical power output, P, from each of these devices as a function of the electrical current input, I, from the modulation circuitry. As the figure indicates, the LED has a relatively linear P-I characteristic, whereas the LD has a strong nonlinearity or threshold effect. The LD can also be prone to kinks when the power actually decreases with increasing input current. LDs have advantages over LEDs in the sense that they can be modulated at very high speeds, produce greater optical power, and produce an output beam with much less spatial width than an LED. This gives LDs higher coupling efficiency to the fiber-optic cable. LED advantages include a higher reliability, better linearity, and lower cost.
Figure 17Figure 3-17 LED and LD P-I Characteristics
A key difference between the optical output of an LED and a LD is the wavelength spread over which the optical power is distributed. The spectral width, σ, is the 3-dB optical power width (measured in nanometers or microns). The spectral width impacts the effective transmitted signal bandwidth. A larger spectral width takes up a larger portion of the fiber-optic cable link bandwidth. Figure 3-18 shows the spectral width of the two devices. The optical power generated by each device is the area under the curve. The spectral width is the half-power spread. An LD always has a smaller spectral width than an LED. The specific value of the spectral width depends on the details of the diode structure and the semiconductor material. However, typical values for an LED are around 40 nm for operation at 850 nm and 80 nm at 1310 nm. Typical values for an LD are 1 nm for operation at 850 nm and 3 nm at 1310 nm.
Figure 18Figure 3-18 LED and LD Spectral Widths
Other transmitter parameters include packaging, environmental sensitivity of device characteristics, heat sinking, and reliability. With either an LED or LD, the transmitter package must have a transparent window to transmit light into the fiber-optic cable. It can be packaged with either a fiber-optic cable pigtail or with a transparent plastic or glass window. Some vendors supply the transmitter with a package having a small hemispherical lens to help focus the light into the fiber-optic cable. Packaging must also address the thermal coupling for the LED or LD. A complete transmitter module can consume more than 1 watt, which could result in significant heat generation. Plastic packages can be used for lower-speed and lower-reliability applications. However, high-speed and high-reliability transmitters need metal packaging with built-in fins for heat sinking.
There are several different schemes for carrying out the modulation function. These include intensity modulation (IM), frequency shift keying (FSK), phase shift keying (PSK), and polarization modulation (PM). Within the context of a premise fiber-optic data link, the only one really used is IM. IM is used universally for premise fiber-optic data links because it is well matched to the operation of both LEDs and LDs. The carrier that each of these sources produces is easy to modulate with this technique. Passing current through them operates both of these devices. The amount of power that they radiate (sometimes referred to as the radiance) is proportional to this current. In this way, the optical power takes the shape of the input current. If the input current is the waveform m(t) representing the binary information stream, the resulting optical signal looks like bursts of optical signal when m(t) represents a 1 and the absence of optical signal when m(t) represents a 0. This is also known as direct modulation of the LED or LD.

Receiver

Figure 3-19 shows a schematic of an optical receiver. The receiver serves two functions: It must sense or detect the light coupled out of the fiber-optic cable and convert the light into an electrical signal, and it must demodulate this light to determine the identity of the binary data that it represents. The receiver performs the OE transducer function.
Figure 19Figure 3-19 Schematic of an Optical Receiver
A receiver is generally designed with a transmitter. Both are modules within the same package. The light detection is carried out by a photodiode, which senses light and converts it into an electrical current. However, the optical signal from the fiber-optic cable and the resulting electrical current will have a small amplitude. Consequently, the photodiode circuitry must be followed by one or more amplification stages. There might even be filters and equalizers to shape and improve the information-bearing electrical signal.
The receiver schematic in Figure 3-19 shows a photodiode, bias resistor circuit, and a low-noise pre-amp. The output of the pre-amp is an electrical waveform version of the original information from the source. To the right of this pre-amp is an additional amplification, filters, and equalizers. All of these components can be on a single integrated circuit, a hybrid, or discretely mounted on a printed circuit board.
The receiver can incorporate a number of other functions, such as clock recovery for synchronous signaling, decoding circuitry, and error detection and recovery. The receiver must have high sensitivity so that it can detect low-level optical signals coming out of the fiber-optic cable. The higher the sensitivity, the more attenuated signals it can detect. It must have high bandwidth or a fast rise time so that it can respond fast enough and demodulate high-speed digital data. It must have low noise so that it does not significantly impact the BER of the link and counter the interference resistance of the fiber-optic cable transmission medium.
There are two types of photodiode structures: positive intrinsic negative (PIN) and the avalanche photodiode (APD). In most premise applications, the PIN is the preferred element in the receiver. This is mainly due to fact that it can be operated from a standard power supply, typically between 5 and 15V. APD devices have much better sensitivity. In fact, APD devices have 5 to 10 dB more sensitivity. They also have twice the bandwidth. However, they cannot be used on a 5V printed circuit board. They also require a stable power supply, which increases their cost. APD devices are usually found in long-haul communication links and can increasingly be found in metro-regional networks (because APDs have decreased in cost).
The demodulation performance of the receiver is characterized by the BER that it delivers to the user. The sensitivity curve indicates the minimum optical power that the receiver can detect compared to the data rate, to achieve a particular BER. The sensitivity curve varies from receiver to receiver. The sensitivity curve considers within it the SNR parameter that generally drives all communications-link performance. The sensitivity depends on the type of photodiode used and the wavelength of operation. Figure 3-20 shows sensitivity curve examples.
Figure 20Figure 3-20 Receiver Sensitivity Curves
The quantum limit curve serves as a baseline reference. In a sense it represents optimum performance on the part of the photodiode in the receiver—that is, performance in which there is 100 percent efficiency in converting light from the fiber-optic cable into an electric current for demodulation. All other sensitivity curves are compared to the quantum limit.


















Fiber Span Analysis

Span analysis is the calculation and verification of a fiber-optic system's operating characteristics. This encompasses items such as fiber routing, electronics, wavelengths, fiber type, and circuit length. Attenuation and nonlinear considerations are the key parameters for loss-budget analysis. Before implementing or designing a fiber-optic circuit, a span analysis is recommended to make certain the system will work over the proposed link. Both the passive and active components of the circuit have to be included in the loss-budget calculation. Passive loss is made up of fiber loss, connector loss, splice loss, and losses involved with couplers or splitters in the link. Active components are system gain, wavelength, transmitter power, receiver sensitivity, and dynamic range.
Nonlinear effects occur at high bit rates and power levels. These effects must be mitigated using compensators, and a suitable budget allocation must be made during calculations.
The overall span loss, or link budget as it is sometimes called, can be determined by using an optical meter to measure true loss or by computing the loss of system components. The latter method considers the loss associated with span components, such as connectors, splices, patch panels, jumpers, and the optical safety margin. The safety margin sets aside 3 dB to compensate for component aging and repair work in event of fiber cut. Adding all of these factors to make sure their sum total is within the maximum attenuation figure ensures that the system will operate satisfactorily. Allowances must also be made for the type of splice, the age and condition of the fiber, equipment, and the environment (including temperature variations).
NOTE
Considerations for temperature effects associated with most fibers usually yield ?1 dB that could be optionally included in optical loss-budget calculations.

Transmitter Launch Power

Power measured in dBm at a particular wavelength generated by the transmitter LED or LD used to launch the signal is known as the transmitter launch power. Generally speaking, the higher the transmitter launch power, the better. However, one must be wary of receiver saturation, which occurs when the received signal has a very high power content and is not within the receiver's dynamic range. If the signal strength is not within the receiver's dynamic range, the receiver cannot decipher the signal and perform an OE conversion. High launch powers can offset attenuation, but they can cause nonlinear effects in the fiber and degrade system performance, especially at high bit rates.

Receiver Sensitivity and Dynamic Range

Receiver sensitivity and dynamic range are the minimum acceptable value of received power needed to achieve an acceptable BER or performance. Receiver sensitivity takes into account power penalties caused by use of a transmitter with worst-case values of extinction ratio, jitter, pulse rise times and fall times, optical return loss, receiver connector degradations, and measurement tolerances. The receiver sensitivity does not include power penalties associated with dispersion or with back reflections from the optical path. These effects are specified separately in the allocation of maximum optical path penalty. Sensitivity usually takes into account worst-case operating and end-of-life (EOL) conditions. Receivers have to cope with optical inputs as high as –5 dBm and as low as –30 dBm. Or stated differently, the receiver needs an optical dynamic range of 25 dB.

Power Budget and Margin Calculations

To ensure that the fiber system has sufficient power for correct operation, you need to calculate the span's power budget, which is the maximum amount of power it can transmit. From a design perspective, worst-case analysis calls for assuming minimum transmitter power and minimum receiver sensitivity. This provides for a margin that compensates for variations of transmitter power and receiver sensitivity levels.
Power budget (PB) = Minimum transmitter power (PTMIN) – Minimum receiver sensitivity (PRMIN)
You can calculate the span losses by adding the various linear and nonlinear losses. Factors that can cause span or link loss include fiber attenuation, splice attenuation, connector attenuation, chromatic dispersion, and other linear and nonlinear losses. Table 3-1 provides typical attenuation characteristics of various kinds of fiber-optic cables. Table 3-2 provides typical insertion losses for various connectors and splices. Table 3-3 provides the margin requirement for nonlinear losses along with their usage criteria. For information about the actual amount of signal loss caused by equipment and other factors, refer to vendor documentation.
Span loss (PS) = (Fiber attenuation * km) + (Splice attenuation * Number of splices) +
(Connector attenuation * Number of connectors) + (In-line device losses) + (Nonlinear losses) + (Safety margin) 

Case 1: MMF Span Analysis

Consider the fiber-optic system shown in Figure 3-21 operating at OC-3 (155 Mbps). The minimum optical transmitter launch power is –12.5 dBm, and the maximum optical transmitter launch power is –2 dBm at 1310 nm. The minimum receiver sensitivity is –30 dBm, and the maximum receiver sensitivity is –3 dBm at 1310 nm. The example assumes inclusion of two patch panels in the path, two mechanical splices, with the system operating over 2 km of graded index 50/125-m multimode fiber-optic cable. Refer to Tables 3-1, 3-2, and 3-3 for appropriate attenuation, component, and nonlinear loss values.
Figure 21Figure 3-21 MMF Span Analysis
The system operates at 155 Mbps or approximately 155 MHz. At such bit rates, there is no need to consider SPM, PMD, or SRS/SBS margin requirements. Because the link is a single-wavelength system, there is no need to include XPM or FWM margins. However, it is safe to consider the potential for a degree of chromatic dispersion, because chromatic dispersion occurs at all bit rates.